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Abstract

The equilibrium Eulerian method is a simple way to determine the velocity field of a disperse system of
particles. It avoids solving a partial differential equation for particle velocity, which makes it more efficient

than the standard Eulerian–Eulerian method. It captures such essential disperse-phase physics as prefer-

ential concentration and turbophoretic migration––effects which are ignored by methods that set the

particle velocity equal to the fluid velocity. Although the equilibrium Eulerian method works well for small

particles, it fails for particles that are too large. This paper presents a straightforward improvement to the

method which minimizes the error for larger particles, thereby extending the method�s range of applica-

bility. In particular, it is demonstrated that the modified method captures a physical mechanism neglected

by unmodified method: the memory a particle retains when it migrates to an adjacent layer of fluid. The
improvement is demonstrated in a direct numerical simulation (DNS) of turbulent channel flow, where

particles migrate toward the wall through a strong shear. It is also demonstrated that the modified method

performs well in a case where no mean shear is present: a DNS of isotropic turbulence.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the standard Eulerian–Eulerian method of evolving a multiphase flow, it is assumed that
there is a unique particle velocity at every point in space. The derivation of the method obtains
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this velocity by averaging over either an ensemble or a small volume, but the method can only
work well when there is a narrow distribution of particle velocities at a given place and time. Ferry
and Balachandar (2001) show that particles, in fact, entrain to a unique equilibrium velocity field
provided their response time is sufficiently small compared to the time scales of the flow, under the
assumption of one-way coupling. This result does more than validate the use of the Eulerian–
Eulerian method: it suggests a new method wherein the particle velocity field v is not obtained via
the evolution of a partial differential equation (PDE), but is obtained directly from the local
spatial and temporal derivatives of the fluid velocity field u. This method was named the equi-
librium Eulerian method (or fast Eulerian method). An example of its effectiveness at evolving
concentration fields may be found in Ferry and Balachandar (2002).

Ferry and Balachandar (2001) evaluated the accuracy of a first-order approximation to the
equilibrium Eulerian velocity by comparing ensembles of particles evolved with this velocity to
those evolved with the exact velocity (obtained via Lagrangian tracking). Tests were performed in
a turbulent channel flow of Res ¼ 180 for various particle-to-fluid density ratios and a wide range
of nondimensional particle time scales. It was shown that for small particles of nondimensional
time scale much less than unity the equilibrium Eulerian approach predicts the particle velocity
accurately, and that as the particles increase in size the error correspondingly increases.

One of the most important physical effects captured accurately by the equilibrium Eulerian
approximation is that of the mean migration of particles toward the wall. This is a feature of wall-
bounded turbulent flows that has long been observed experimentally, beginning with Friedlander
and Johnstone (1957). Explanations for this phenomenon were given independently by Cam-
paraloni et al. (1975), and by Reeks (1983), who termed it turbophoresis, in analogy to the more
familiar phenomenon of thermophoresis. The turbophoretic migration of particles toward walls
has also been observed numerically (e.g., Kallio and Reeks, 1989; Brooke et al., 1994). The same
phenomenon dictates that lighter-than-fluid bubbles migrate away from walls. The equilibrium
Eulerian method accurately captures this turbophoretic wall-normal migration velocity for all
particle-to-fluid density ratios ranging from dense particles to bubbles.

The equilibrium Eulerian method is, however, less successful in accurately capturing the
streamwise particle velocity of larger particles. As will be shown (in Fig. 7b) there is a substantial
discrepancy between the actual mean streamwise slip velocity and the value predicted by the
equilibrium Eulerian method, for large particles close to the no-slip walls. For the largest particle
considered ðsþ ¼ 3Þ in the high shear region close to the walls the actual streamwise slip velocity
and the corresponding prediction by the equilibrium Eulerian method are 0.18 and 0.08, re-
spectively. This discrepancy arises due to the approximation of v � $v by u � $u in the equilibrium
Eulerian approach. In particular, the discrepancy in the streamwise slip arises from the difference
between v2 ov1=oy and u2 ou1=oy. In the near-wall region the fluid and particle shear are compa-
rable (at yþ ¼ 7: ov1=oy � ou1=oy � 0:8). However, the mean wall-normal velocity of the particles
is different from that of the fluid due to turbophoretic migration. For example, for the largest
particle considered ðsþ ¼ 3Þ in the near-wall region the difference reaches a peak of
hv2 � u2i ¼ 0:04. Although this turbophoretic migration velocity might appear much smaller than
the mean streamwise velocity, in combination with the strong near-wall shear it can lead to a
substantial error in the equilibrium estimation of the near-wall streamwise velocity (this dis-
crepancy being approximately sþðv2 � u2Þou1=oy). In essence, as particles migrate across fluid
streamlines, their velocity differs from the local fluid velocity due to the finite memory the inertial
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particles retain of where they came from. The equilibrium Eulerian approximation fails to account
for this mechanism at OðsÞ and hence results in the observed discrepancy in the streamwise slip in
the turbulent channel flow.

Here we propose a simple modification to the equilibrium Eulerian approach, which accounts
for the effect of the transverse motion of particles across fluid streamlines on the particles�
streamwise velocity. One possible approach is to systematically extend the equilibrium Eulerian
expansion to include all terms of Oðs2Þ, as it can be expected that the higher-order effect of
momentum carried by the particles across streamlines to appear at this level. However, these
higher-order terms are poorly behaved, from a computational perspective, since they involve even
higher order derivatives of the form D2u=Dt2. Furthermore, it has been observed in Ferry and
Balachandar (2001) that with the inclusion of all the Oðs2Þ terms the predictive capability of the
equilibrium approximation degrades for all but the smallest particles. Instead, in Section 2 we
derive a modified equilibrium Eulerian method based on some simple heuristic assumptions and
show that it incorporates certain important Oðs2Þ terms. This modification also introduces some
implicitness in the approximation of the equilibrium particle velocity field. The remainder of the
paper evaluates the effect of this local implicitness on the predictive capability of particle velocity
by comparing the modified equilibrium velocity with the original (unmodified) one presented in
Ferry and Balachandar (2001) and with the exact Lagrangian particle velocity. Section 3 explores
the behavior of these different methods analytically for simple linearly varying ambient flows.
These simple results will prove quite useful in explaining the equilibrium Eulerian velocities ob-
tained in the more complex cases of isotropic turbulence and turbulent channel flow to be dis-
cussed in Sections 4 and 5. Conclusions are drawn in Section 6.

2. Locally implicit equilibrium particle velocity

For the simple case of a particle acted on by Stokes drag and gravity, the equation for the
particle velocity v is

dv

dt
¼ u� v

s
þ g: ð1Þ

If s is sufficiently small, then it is appropriate to express v as an expansion in terms of u, with s as
the small parameter. Such an expansion can be used to substitute for dv=dt in (1), and after re-
arrangement one obtains the expansion (Ferry and Balachandar, 2001):

v� u ¼ �s
Du

Dt

�
� g

�
þOðs2Þ: ð2Þ

The equilibrium Eulerian method approximates v by its first-order expansion in s:

ve ¼ u� s
Du

Dt

�
� g

�
: ð3Þ

This method of determining the particle velocity is intermediate in complexity between evolving a
PDE to find v (the standard Eulerian method) and simply setting v ¼ u, as is done in the dusty gas
method (Saffman, 1962; Marble, 1970) or v ¼ uþ sg (Manninen et al., 1996). The relative
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importance of gravitational settling in the above equations is determined by the ratio of gravi-
tational acceleration to local fluid acceleration ðjgj=jDu=DtjÞ. For values of this ratio much less
than unity the effect of gravity can be neglected and for the case jgj= � jDu=Dtj the effects of both
local fluid and gravitational acceleration contribute to particle slip. For the case of very strong
settling ðjgj � jDu=DtjÞ, to the leading order the equilibrium approximation reduces to the dusty
gas formalism.

The important advantage of the equilibrium Eulerian approximation is that it is computa-
tionally very efficient. This applies especially when particles of various sizes are evolved, because
this requires a particle velocity field for each size to be solved in the standard case, whereas in the
equilibrium approximation, once the OðsÞ correction is evaluated the velocity field of the different
particle sizes can be readily obtained. The other advantage is that it avoids the computational
difficulties of the standard Eulerian approach associated with evolving the particulate momentum
equation for v, especially in the limit of small particle response time s.

Though simpler than the standard method, the equilibrium Eulerian method is more costly
and complicated than simply setting v ¼ uþ sg. However, using such an approximation implies
that an initially uniform particle field will stay uniform, in contradiction to the observed phe-
nomena of preferential concentration (Maxey, 1987; Squires and Eaton, 1991; Eaton and
Fessler, 1994) and turbophoretic migration. So if v ¼ uþ sg is to be used, the particles must be
small enough that these effects are very weak. On the other hand, the equilibrium Eulerian
approach captures these effects accurately, reproducing the exact analytic behavior to OðsÞ
accuracy.

Comparing (1) and (3) shows that the equilibrium Eulerian method can be described as simply
modeling dv=dt by Du=Dt. Although this closure works quite well when s is small, when s be-
comes sufficiently large, the error in the approximation becomes significant. In a direct numerical
simulation (DNS) of turbulent channel flow, it was observed that with increasing s, the first
statistic to develop an error is the streamwise slip velocity. Heavier-than-fluid particles on average
migrate toward the walls, and therefore in the near-wall region they tend to move faster along the
streamwise direction than the slow-moving near-wall fluid. In contrast, lighter-than-fluid particles
migrate away from the wall and therefore their streamwise velocity lags the local fluid velocity.
This streamwise slip velocity of particles is underestimated with the equilibrium Eulerian ap-
proximation (3).

The reason for this underestimation is that the equilibrium Eulerian method fails to represent
the wall-normal transport of streamwise velocity due to the turbophoretic migration of particles.
Because v has a wallward component significantly different than u, the u � $u term in Du=Dt
provides a poor approximation to v � $v in dv=dt. The approximation can be improved if instead
of the closure dv=dt � Du=Dt one uses dv=dt � du=dt:

v� u ¼ �s
Du

Dt

�
þGðv� uÞ � g

�
; ð4Þ

where G ¼ ð$uÞT. This might be considered an implicit equation for v� u, but it only requires a
3· 3 matrix to be inverted locally at every point for the evaluation of the local equilibrium particle
velocity. Collecting the terms of (4) involving v� u yields the following improved equilibrium
approximation:

872 J. Ferry et al. / International Journal of Multiphase Flow 29 (2003) 869–891



vm ¼ u� sðIþ sGÞ�1 Du

Dt

�
� g

�
: ð5Þ

The only difference between (3) and (5) is the correction factor ðIþ sGÞ�1
. The former will be

referred to as the unmodified equilibrium approximation, and the latter as the modified equi-
librium approximation. The equilibrium and modified equilibrium approximations agree to first
order ðve � vm ¼ Oðs2ÞÞ, so all the first-order results about the unmodified equilibrium Eulerian
method carry over to the modified method: e.g., turbophoretic migration, preferential concen-
tration. However, the modified method shows some nice features when we investigate the precise
form of this error. Let v denote the exact solution to (1), and d=dt, a derivative following the exact
solution. Then

ve � v ¼ s ðv
�

� uÞ � $uþ d

dt
ðv� uÞ

�
;

vm � v ¼ s ðv
�

� vmÞ � $uþ
d

dt
ðv� uÞ

�
:

ð6Þ

These equations split the error into two components: that due to migration of particles through a
velocity gradient, and due to rate of change of slip velocity along a particle path. The first term
can make ve � v relatively large when a particle migrates (via turbophoresis or gravity) through a
shear flow. Note, however, that this term becomes much smaller for vm � v because jv� vmj �
jv� uj.

Expanding (5) in s yields

vm ¼ u� s
Du

Dt

�
� g

�
þ s2G

Du

Dt

�
� g

�
þOðs3Þ: ð7Þ

This may be compared to the following exact power series expansion for v, which can be obtained
directly from (1):

v ¼ u� s
Du

Dt

�
� g

�
þ s2 G

Du

Dt

��
� g

�
þD2u

Dt2

�
þOðs3Þ: ð8Þ

Note that the Oðs2Þ term in the modified equilibrium approximation (vm) agrees with only the part
of the Oðs2Þ term in the exact expansion (v) that represents migration through a velocity gradient.
It was observed in Ferry and Balachandar (2001) that the inclusion of the entire Oðs2Þ term, as
given in the exact expansion (8), does not significantly improve the accuracy of the equilibrium
velocity estimate. In fact, for large particles the error increases with the inclusion of the Oðs2Þ
term. Part of the reason for this is the poor computational behavior of D2u=Dt2, which involves
higher-order derivatives. In addition, the standard equilibrium approximations truncated to OðsÞ
or Oðs2Þ continue to worsen in an unbounded manner as s increases. The implicit nature of the
modified method, however, alleviates the problem: as s ! 1, vm approaches a constant, and the
error, although it may be substantial, remains bounded.
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3. Steady linear ambient flows

Here we will consider simple cases of steady linear ambient flows of the form

u ¼ Gx; ð9Þ

where the velocity gradient matrix G is constant. In such simple ambient flows, it is easy to solve
(1) to obtain the exact particle velocity. It is also easy to determine the trajectories of particles
evolved with either the modified or the unmodified equilibrium Eulerian velocity. We shall con-
sider the three cases of a particle settling through a linear shear flow, a particle in a vortex, and a
particle in an extensional or compressive straining flow.

3.1. Particle settling in linear shear flow

A linear shear flow is given by uðx; tÞ ¼ kx2êe1, and a settling velocity by w ¼ �wêe2 (where
w ¼ sg). For this flow Du=Dt ¼ 0, so

ve ¼ uþ w and vm ¼ uþ ðIþ sGÞ�1
w: ð10Þ

Because ðIþ sGÞ�1
w ¼ kwsêe1 � wêe2, the difference between ve and vm is constant, and is in the

streamwise direction. We now solve (1) to get the exact particle velocity. Re-writing (1) (with
u ¼ Gx) in terms of x and w, gives s€xxþ _xx�Gx ¼ w, which can be solved along with the initial
conditions to obtain:

x1ðtÞ ¼ x1ð0Þ þ ktðx2ð0Þ þ ws þ 2sðv2ð0Þ þ wÞÞ � kwt2=2

þ s v1ð0Þð � kðx2ð0Þ þ ws þ ðt þ 2sÞðv2ð0Þ þ wÞÞÞð1� expð�t=sÞÞ;
x2ðtÞ ¼ x2ð0Þ � wt � sðv2ð0Þ þ wÞð1� expð�t=sÞÞ:

ð11Þ

After the transients decay, we obtain the following expressions for the fluid velocity (at the
particle location) and the particle velocity:

u1ðtÞ ¼ kðx2ð0Þ þ sðv2ð0Þ þ wÞ � wtÞ; u2ðtÞ ¼ 0;

v1ðtÞ ¼ kðx2ð0Þ þ sðv2ð0Þ þ 2wÞ � wtÞ; v2ðtÞ ¼ �w:
ð12Þ

Therefore the settling velocity is indeed �w, as predicted by both the modified and unmodified
Eulerian methods. The exact streamwise velocity can be expressed as v1ðtÞ ¼ u1ðtÞ þ kws. This is
precisely what was predicted by the modified equilibrium Eulerian method. The streamwise slip
velocity, kws, represents the memory a particle retains of faster streamwise motion at a distance
ws above its current position.

The simple shear flow example models the turbulent channel flow problem, with gravitational
settling serving as a proxy for turbophoretic velocity. The example suggests that the local im-
plicitness will fix the problem of streamwise lag, and in Section 5 it is shown that this is indeed the
case. Accurate prediction of streamwise slip may be important in the case of the two-way coupled
formulation because of its impact on the wallward transport of streamwise momentum.
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3.2. Particle in a vortex

Here we consider the case of a particle in a vortex and ignore the effect of gravity. It is con-
venient to work with complex numbers rather than real vectors. Let z ¼ xþ iy denote the particle
position, v ¼ _zz be the particle velocity, and u ¼ ikz (with k real and positive) be the fluid velocity.
The equation of motion of the particle reduces to

s€zzþ _zz� ikz ¼ 0: ð13Þ

The roots of this ODE�s characteristic equation are

r� ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4isk

p

2s
: ð14Þ

Therefore the solutions for z and v have the form

zðtÞ ¼ cþerþt þ c�er�t and vðtÞ ¼ cþrþerþt þ c�r�er�t: ð15Þ

ReðrþÞ is guaranteed to be greater than zero, which implies the physically obvious fact that
particles are spun out of vortices. Furthermore, because Reðr�Þ < ReðrþÞ, the root r� always
represents a faster decay than rþ, and can be ignored as a transient (and, in fact, Reðr�Þ < �1=s,
so the transient decays rapidly). Therefore we have the result

vðtÞ ¼ rþzðtÞ ¼ xkzðtÞ; ð16Þ

where x is a dimensionless measure of the particle velocity as a function of position.
Similarly, we can define x0 ¼ v0=kz, xe ¼ ve=kz, and xm ¼ vm=kz to be related to the different

approximations v the fluid, equilibrium Eulerian, and modified equilibrium Eulerian velocity,
respectively. The results can be written in terms of the non-dimensional parameter g ¼ ks, which
expresses the strength of the vortical flow relative to the particle response time:

x0 ¼ i; xm ¼ iþ g
1þ ig

¼ i

1þ ig
;

xe ¼ iþ g; x ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ig

p
2g

¼ 2i

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ig

p :

ð17Þ

Let us first investigate their behaviors in the small- and large-g limits. The Taylor series about
g ¼ 0 in each case are

x0 ¼ i; xm ¼ iþ g � ig2 � g3 þOðg4Þ;
xe ¼ iþ g; x ¼ iþ g � 2ig2 � 5g3 þOðg4Þ:

ð18Þ

Unlike in the shear flow, the locally implicit correction does not yield a solution of higher-order
accuracy. The correction does however reduces the error by 50% for small g. Although the
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equilibrium methods are intended for only small s, it is interesting to observe their behavior in the
limit g ! 1. The Taylor series in f ¼ g�1 about f ¼ 0 are

x0 ¼ i; xm ¼ f þ if2 þOðf3Þ;

xe ¼ f�1 þ i; x ¼ 1þ iffiffiffi
2

p f1=2 � 1

2
f þ 1� i

8
ffiffiffi
2

p f3=2 þOðf5=2Þ:
ð19Þ

For large g the unmodified equilibrium Eulerian method is worse than any other method, whereas
xm ! 0, just as x ! 0, albeit at a different rate.

The real part of x (shown in Fig. 1a) corresponds to the radial particle velocity and has the
important role of governing the preferential concentration of particles. The v ¼ u approximation
completely ignores the radial migration of the particle, whereas the equilibrium Eulerian method
captures the effect well for small g. Unfortunately, the equilibrium Eulerian method extrapolates
this small-g behavior to all g, whereas in reality, sufficiently large particles cease to be spun out at
all, because ReðxÞ ! 0 for g ! 1. A closer examination of Fig. 1a indicates that ReðxÞ reaches a
peak value of 0.3003 at g ¼ 1:029 and further decay of ReðxÞ is very slow. The behavior of
ReðxmÞ is qualitatively correct: it increases first, reaches a maximum value of 0.5 at g ¼ 1 and
then decays slowly to zero for large g.

As a dense particle is spun out radially it retains its lower azimuthal velocity as it encounters an
ambient flow of higher azimuthal velocity. Fig. 1b illustrates that both the v ¼ u and the un-
modified equilibrium Eulerian method ignore this effect. The modified equilibrium Eulerian
method captures this azimuthal slip reasonably for gK 0:8. For larger g the departure from the
true behavior increases. The azimuthal slip here plays the role that streamwise slip plays in the
shear flow case, and could be important in terms of the vortex-induced lift force and the impact of
particles on angular momentum balance in the case of two-way coupling.

Fig. 1. (a) Radial and (b) azimuthal velocity factors for vortical flow.
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3.3. Particle in extensional or compressive strain

For extensional strain, let u ¼ kx, with k > 0. Then the particle velocity can be expressed as
v ¼ xkx, where, as in the vortex case, the transient is ignored for the exact solution. The exact and
the approximate solutions along with their Taylor series expansions are given below (see Fig. 2a):

x0 ¼ 1; xm ¼ 1

1þ g
¼ 1� g þ g2 þOðg3Þ;

xe ¼ 1� g; x ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g

p

2g
¼ 1� g þ 2g2 þOðg3Þ:

ð20Þ

The modified equilibrium Eulerian solution is much closer to the exact solution over the entire
range of g.

For compressive strain, let u ¼ �kx, with k > 0. The x-values are the same as in the extensional
case, with g replaced by �g:

x0 ¼ 1; xm ¼ 1

1� g
¼ 1þ g þ g2 þOðg3Þ;

xe ¼ 1þ g; x ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4g

p

2g
¼ 1þ g þ 2g2 þOðg3Þ:

ð21Þ

Note that the exact solution, x, given above is valid only for g < 1=4. For gP 1=4 the roots of the
characteristic equation have the same real part, in which case it is impossible to separate the
solution into dominant and transient parts. Physically, for g P 1=4 the particle�s inertia is too
strong for it to approach the origin monotonically. Instead, the particle overshoots the origin and
executes an oscillatory motion. As a result, the velocity field cannot be expressed as a unique
function of its position. Several different branches of the exact solution are shown in Fig. 2b. Also
note that xm becomes singular at g ¼ 1. However, it is clear that over the range 06 g6 1=4, the

Fig. 2. Velocity factors for (a) extensional and (b) compressive strain.
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locally implicit correction improves the solution over the unmodified equilibrium Eulerian ap-
proach.

3.4. Summary of examples

The motivation for the modified equilibrium Eulerian method was to eliminate errors associ-
ated with the streamwise momentum carried by a particle as it migrates across fluid streamlines. In
the cases of shear and vortical flow, the unmodified method fails to account for the changing flow
conditions seen by the particle, whereas the modified method accounts for the effect.

The impact of the different approximations on the preferential concentration of particles can be
evaluated as well. The vortex and straining flow cases can be examined by comparing xm and x in
(18) with the corresponding values in (20) (or (21)). For small g, the radial migration of particles
in the vortex, ReðxÞ, as predicted by the unmodified and modified methods are in agreement with
the exact result at order g2, while in the straining flows the prediction of entrainment is accurate
only to order g. However, the modified method reduces the leading order error in preferential
concentration by a factor of 2 in the case of straining flows, but only by 20% in the case of a
vortex.

Along the direction of compressional strain, for g > 1=4, a unique particle velocity is not
possible––the long time oscillatory behavior of the particle remains influenced by its initial con-
dition. Thus an equilibrium Eulerian velocity for the particles under such a condition needs to be
interpreted with caution. For lack of precise information on the initial distribution of all particles
in a typical multiphase flow, one may simply consider the equilibrium Eulerian velocity to ap-
proximate the average behavior (instead of the unique motion) of the particles under such a
condition of strong compressional strain. The modified equilibrium approximation faces difficulty
as g approaches unity, as the implicit operator becomes singular. However, it must be emphasized
that the equilibrium Eulerian method is intended only for particles in flow conditions such that g
is small. Nevertheless, in Appendix A we present a simple algorithm which for small g reduces to
the modified method but as g ! 1 avoids the singularity.

4. Numerical study: isotropic turbulence

In our first numerical study we consider particle motion in isotropic turbulence and evaluate the
accuracy of the unmodified and modified equilibrium approaches by comparing their statistics
with those obtained from the exact particle motion. In isotropic turbulence, there is neither a wall
layer, nor any associated turbophoretic migration, nor a mean streamwise slip velocity. Therefore,
we will focus attention on different measures of preferential concentration of particles.

A DNS of forced isotropic turbulence data is performed using a Fourier pseudospectral method
(Eswaran and Pope, 1988a,b). The flow domain consists of a cubic box of length L ¼ 2p dis-
cretized into 963 equispaced grid points, with periodic boundary conditions in all three directions.
The results to be reported are for a Taylor microscale Reynolds number Rek (¼ u0k=m) of 60.5. Six
different ensembles of 100,000 particles each with response times sk ¼ 0:08, 0.16, 0.32, 0.64, 1.28,
and 2.56, are evolved using the exact, equilibrium Eulerian, and modified equilibrium Eulerian
velocities, yielding 18 different data sets. The gravitational acceleration is zero in each case. The
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response time sk and all other quantities to be presented in this section have been nondimen-
sionalized by the Kolmogorov scale. The interpolation of fluid velocity to particle location was
accomplished using the first derivative method, which is defined in Appendix B. Particles were
evolved for 15,000 time steps to reach a statistically stationary state, which corresponds to at least
20 particle response times, and then statistics were gathered for another 15,000 time steps.
The exact Lagrangian particle velocities and positions were obtained by fourth-order Adams–
Bashforth and Adams–Moulton schemes, respectively.

Here we examine two different measures of preferential concentration: jSj2 � jXj2 and the
swirling strength ki. The former is motivated by the analytical estimation of preferential con-
centration obtained by Maxey (1987) as

$ � v ¼ �s jSj2
�

� jXj2
�
þOðs2Þ; ð22Þ

where S and X are the symmetric and antisymmetric parts of $u, respectively. The latter is defined
to be magnitude of the imaginary part of the pair of complex conjugate eigenvalues of the fluid
velocity gradient $u. If all eigenvalues are real, then ki is defined to be zero. The swirling strength
is a geometrically motivated indicator of the presence of vortical structures (Zhou et al., 1996). It
is a more relevant measure of vortical structure than the magnitude of the vorticity: for example, it
deems shear flow nonvortical.

In Fig. 3, the ensemble averaged quantities hjSj2 � jXj2i and hkii are plotted versus sk. The
average is taken over all particles in an ensemble and over time. It is observed that both the
unmodified and modified equilibrium Eulerian schemes compare well with the exact statistics (of
the Lagrangian particles) for sk K 0:32. For sk J 0:32 there is an increasing discrepancy between
the approximations and the exact result in both plots. The peak preferential concentration for the
exact particles, as indicated by both hjSj2 � jXj2i and ki, occurs for sk ¼ 0:64. As sk increases
further, the value of hjSj2 � jXj2i for the exact particles decreases, in agreement with the expec-
tation that for very large particles there will be little preferential concentration. This agrees with
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Fig. 3. Mean statistics as a function of sk : (a) hjSj2 � jXj2i and (b) hkii.
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the earlier observation (Eaton and Fessler, 1994) that preferential concentration is most effective
when the time scale of the particle approximately matches that of the Kolmogorov eddies. The
unmodified equilibrium Eulerian method exhibits a monotonic increase in hjSj2 � jXj2i with sk,
and hence an unphysical, ever-increasing preferential accumulation. The modified equilibrium
approximation arrests this trend and exhibits a maximum value of hjSj2 � jXj2i for sk � 1, and a
further decrease in preferential concentration for larger particles. The behavior of the ki statistics
is similar.

Figs. 4 and 5 show the PDFs of jSj2 � jXj2 and ki for particles of size sk ¼ 0:32 and 1.28. The
PDFs for the exact, modified, and unmodified equilibrium particles are shown, as well as the PDF
based on fluid statistics at the grid points. It is clear from the figures that the locally implicit

Fig. 4. Probability distribution function of jSj2 � jXj2: (a) sk ¼ 0:32 and (b) sk ¼ 1:28.

Fig. 5. Probability distribution function of ki: (a) sk ¼ 0:32 and (b) sk ¼ 1:28.
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correction does not have a significant influence on the statistics for small particles. However, for
the larger particles of sk ¼ 1:28 the locally implicit correction does provide some improvement.

5. Numerical study: turbulent channel flow

5.1. Description of the simulation

In our other numerical study a DNS of a turbulent flow is performed in a channel with di-
mensions 4ph in the streamwise (x), 2h in the wall-normal ðyÞ, and 4ph=3 in the spanwise (z)
direction. The Reynolds number based on half channel height and friction velocity is Res ¼ 180.
The DNS employs a pseudospectral algorithm on a grid of size 192· 128 · 192, fully de-aliased in
the x and z directions. Fluid and particle quantities are evolved with third-order Runge–Kutta
time stepping, and a time step in wall units of Dtþ ¼ 0:2. Interpolation of quantities to particle
locations is performed via the first derivative method (see Appendix B).

Fifteen ensembles of 500,000 particles each were evolved, comprising three modes of evolution
(equilibrium Eulerian, modified equilibrium Eulerian, and exact Lagrangian) and five values of sþ
ranging from 1 to 10 for each mode. The actual diameters of the particles depend on the density
ratio q. Table 1 gives the particle diameter in wall units, dþ

p , corresponding to q ¼ 1000 for each sþ

used in the simulation. Also shown in the table are the particle response times and diameters in
Kolmogorov units, which are functions of wall-normal distance, yþ. The gravitational accelera-
tion is zero in each case. The simulation was run to tþ ¼ 1000. Statistics were gathered at an
interval of Dtþ ¼ 20, beginning at tþ ¼ 160. Thus, the particles were evolved for at least 16 re-
sponse times before statistics were taken, allowing the particles to settle into a statistically steady
state.

5.2. Results

The statistics on mean wall-normal slip velocity are shown in Fig. 6 for particles of size sþ ¼ 1
and 3. These and all other quantities plotted for the turbulent channel flow are given in wall units,
where the channel half height is the length scale and the friction velocity u� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
sw=qf

p
is

the velocity scale. Here sw is the wall shear stress and qf is the fluid density. For the fluid the
mean wall-normal velocity is constrained to be identically zero by continuity. In the absence of

Table 1

Response times and particle diameters (based on q ¼ 1000) in wall units, and in Kolmogorov units based on local

conditions at yþ ¼ 30, 20, and 7

Size sþ sk j30 sk j20 sk j7 dþ
p dk

p j30 dk
p j20 dk

p j7
I 1.00 0.269 0.323 0.342 0.134 0.0696 0.0762 0.0785

II 1.78 0.479 0.574 0.609 0.179 0.0929 0.1016 0.1047

III 3.16 0.852 1.021 1.083 0.239 0.1238 0.1355 0.1396

IV 5.62 1.515 1.815 1.926 0.318 0.1651 0.1807 0.1861

V 10.00 2.695 3.227 3.424 0.424 0.2202 0.2410 0.2482
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gravitational settling, the nonzero wall-normal velocity for the particles seen in Fig. 6 is a clear
indication of the turbophoretic effect. For the present case of particles much denser than the fluid
the leading order behavior for the turbophoretic wall-normal velocity of the particles can be
expressed as

hv2i ¼ �sþ
o

oyþ
hu22i: ð23Þ

Thus turbophoretic migration is down the gradient of rms wall-normal fluid velocity fluctuation.
In the turbulent channel flow hu22i reaches a local peak around yþ � 60. Thus the denser-than-fluid
particles on average move toward the wall in the near-wall region, but migrate toward the center
of the channel away from the wall. For the smaller particle type, this behavior is accurately
captured by both equilibrium approximations. Some differences begin to emerge for the larger
particle type, where the improvement due to the locally implicit correction in the modified
equilibrium approximation can be observed. Despite this slight improvement, it is clear that both
the modified and unmodified methods are quite accurate in predicting turbophoretic migration.

The advantage of the locally implicit correction is quite evident in the mean streamwise slip
velocity shown in Fig. 7. As a result of their turbophoretic migration the heavier-than-fluid
particles on average lead the fluid close to the wall, but lag the fluid throughout the rest of the
channel. This general trend is well captured by both equilibrium approximations. However, the
magnitude of slip velocity is underpredicted by the unmodified equilibrium approximation and
the underprediction is substantial for the larger particle type, resulting in more than 50% error. In
contrast, the modified equilibrium approximation evaluates the streamwise slip velocity quite
accurately.

A more complete picture can be obtained from the PDF of streamwise slip velocity. Fig. 8a
shows the PDFs of v1 � u1 for the various methods at yþ ¼ 7 for sþ ¼ 1, which is where the error
is the greatest. Note that for the approximation v ¼ u the PDF of slip velocity is simply a Dirac
delta function. Compared to this, both the modified and unmodified equilibrium Eulerian
methods yield a much more realistic distribution. The unmodified method is in significant error

Fig. 6. Mean wall-normal relative velocity vs. distance from the wall: (a) sþ ¼ 1 and (b) sþ ¼ 3.
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only for the fastest moving particles which have migrated from the buffer region. The modified
equilibrium approximation performs uniformly well. In the sþ ¼ 3 case the PDFs are shown for
yþ ¼ 20, which is more representative of the streamwise slip velocity PDFs over the bulk of the
channel. In Fig. 8b the PDF for the exact particles shows an increased preference for a long tail
with a larger number of very fast and slow moving particles compared to the local fluid. This
behavior is well captured by the modified equilibrium approach, but has been underestimated in
the unmodified case. Such a symmetric error does not adversely influence the statistics on mean
streamwise slip velocity shown in Fig. 7, but does contribute to large errors in the higher even-
order statistics.

Fig. 7. Mean streamwise relative velocity vs. distance from the wall: (a) sþ ¼ 1 and (b) sþ ¼ 3.
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We will now address the statistics on preferential concentration with a plot of planar average of
jSj2 � jXj2 in Fig. 9. The planar average of jSj2 � jXj2 for the fluid reaches a local minimum (large
negative value) near yþ ¼ 30 due to the predominance of vortical structures in the buffer layer. In
contrast, when averaged over all particle positions, jSj2 � jXj2 reaches a strong positive peak in
the buffer region. This difference in behavior is due to the inertia of the particles, which get spun
out of vortices. The equilibrium approximations capture this tendency for preferential accumu-
lation qualitatively; however, quantitative differences exist. The error in the equilibrium ap-
proximations is quite small for the smaller particles, but attains larger values as sþ increases. The
locally implicit correction improves the statistics somewhat, but the error persists. This modest
contribution from the modified equilibrium approximation in terms of preferential accumulation
can be anticipated from the earlier results for a particle in a vortex.

The accuracy of the equilibrium approximations along with that of v ¼ u is presented in Fig. 10
as the maximal deviation in hjSj2 � jXj2i from that of the exact particles for varying sþ. The
behavior of the modified and unmodified methods is similar for small sþ, whereas the modifi-
cation mitigates the degree to which the equilibrium Eulerian method overestimates the prefer-
ential concentration for larger particles. This behavior is similar to the prediction made in Fig. 1
for the case of a vortex for large g.

We next look at the detailed distribution of jSj2 � jXj2, limiting attention to the buffer region,
yþ ¼ 30, where the error in the equilibrium approximation peaks. Fig. 11 plots the PDFs of
jSj2 � jXj2 for both sþ ¼ 1 and sþ ¼ 3. Compared to the fluid elements the behavior of the
heavier-than-fluid particles is interesting: their avoidance of vortical regions is quite strong, but
their tendency to congregate in regions of high strain is relatively mild. While this may be in
agreement with the intuitive notion of particles being spun out of vortices, it is in contrast to the
asymptotic result (22) of Maxey (1987), which states that dense particles avoid regions of high
vorticity and seek regions of high strain-rate equally. This suggests that the particles with sþ P 1
are too large for the asymptotic result to accurately apply. Nevertheless, for sþ ¼ 1 we observe
that both the unmodified and the modified equilibrium approximations capture the entire PDF
quite well.

Fig. 9. Mean value of jSj2 � jXj2 vs. distance from the wall: (a) sþ ¼ 1 and (b) sþ ¼ 3.
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For sþ ¼ 3, the PDF is predicted by both equilibrium approximations to only reasonable ac-
curacy. The overprediction of large positive values and the corresponding underprediction of
large negative values is responsible for the exaggerated mean preferential concentration observed
in Fig. 9b. As can be expected, the PDF of the modified equilibrium approximation is in some-
what better agreement with that of the exact particles.

Finally, through direct observation of the particle distribution we will demonstrate that in spite
of the increase in preferential concentration for the large particles, their distribution remains
physically meaningful and provides a good approximation to the distribution of exact particles.
Fig. 12 shows scatter plots of all sþ ¼ 3 particles at tþ ¼ 200 within a narrow slice about yþ ¼ 30.
The exact particles are in the middle, for comparison with the unmodified equilibrium Eulerian
(top) and modified equilibrium (bottom) particles. Both the unmodified and modified are quite

Fig. 11. PDFs of jSj2 � jXj2 at yþ ¼ 30: (a) sþ ¼ 1 and (b) sþ ¼ 3.
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similar in appearance to the exact case, even for this worst-case location. The reason for this is
that the change in the mean value is caused by an exaggerated abhorrence of the regions of
strongest gradient, whereas the distribution of the majority of the particles is represented quite
accurately, a result which was illustrated by the PDFs. For the modified equilibrium Eulerian the
exaggerated abhorrence of the strong gradient regions is diminished somewhat, so the bottom
scatter plot should approximate the middle one somewhat better. The qualitative agreement is
rather impressive when one compares it to the alternative of using v ¼ u, which would give a
statistically uniform distribution of particles for all time.

6. Conclusions

Small particles in a fluid follow the flow closely, but not exactly. The difference between the
particle and fluid velocities causes particles to accumulate preferentially, and therefore must be
taken into account. The Eulerian–Eulerian method is one way of doing this, but it requires solving

Fig. 12. Equilibrium Eulerian, exact, and modified equilibrium Eulerian particles: sþ ¼ 3, tþ ¼ 200, yþ ¼ 30.
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a system of PDEs for the particle velocity field. Ferry and Balachandar (2001) have shown that, in
the dilute regime, sufficiently small particles entrain exponentially fast to a unique equilibrium
velocity field. Based on this idea, the equilibrium Eulerian method for multiphase flow has been
developed. This method uses a first-order approximation (in particle response time s) to the
equilibrium velocity in order to approximate the exact velocity. The method performs well for
small particles, but begins to exhibit certain errors as s increases. In particular, it fails to represent
the fact that particles migrating through a shear layer remember the velocity of the previous layer
for a period of time.

The present work defines a modified equilibrium Eulerian method with the closure
dv=dt � du=dt. Although still approximate, this closure retains the physics associated with the
convective derivative v � $, which represents the change in fluid conditions along the direction of
particle motion. This improved closure results in the modified equilibrium approximation (5). The
modified equilibrium approximation requires the inversion of a 3 · 3 matrix locally at every point
in the flow and therefore is somewhat more involved than the unmodified equilibrium approxi-
mation. However, both equilibrium approximations are computationally far simpler than the
standard Eulerian approach, which requires solving additional PDEs. The equilibrium approxi-
mations are then tested for a variety of linear flows. Despite the simplicity of these flows, it is quite
illuminating to compare the exact results for particles versus those for particles evolving under the
approximate velocities given by the unmodified and modified equilibrium methods.

In a shear flow the unmodified method exhibits a streamwise velocity equal to that of the local
fluid, whereas the modified method accounts accurately for the memory the particle retains as it
crosses fluid streamlines. Similar behavior was observed in the case of radial migration of particles
in a vortical flow. For small particles there is excellent agreement (Oðs3Þ error) between the exact,
modified, and unmodified methods. For moderate sized particles, there is some disagreement
between the exact result and the unmodified equilibrium approximation. The locally implicit
correction improves the prediction by only about 20%.

Along the direction of extensional strain for small particles there is good agreement (Oðs2Þ
error) between the exact, modified, and unmodified methods. For moderate sized particles, there is
some disagreement between the exact result and the unmodified equilibrium approximation. The
locally implicit correction provides substantial (50%) improvement to the prediction. Along the
direction of compressional strain for small particles there is good agreement (Oðs2Þ error) between
the exact, modified, and unmodified methods. For moderate sized particles, owing to their os-
cillatory behavior, there is no unique representation for the exact velocity in terms of position.
Nevertheless, the equilibrium methods continue to provide a reasonable approximation to the
average behavior.

The performance of the equilibrium approximations was first evaluated in a DNS of isotropic
turbulence. Preferential concentration was assessed in terms of the statistics of jSj2 � jXj2 and of
swirling strength. In each case, a maximal mean value for the exact particles occurs for sk ¼ 0:64.
The unmodified equilibrium Eulerian method indicates an ever-increasing preferential concen-
tration, with increasing sk. The modified method, on the other hand, recovers the correct be-
havior, with the peak mean value at sk � 1.

A DNS of turbulent channel flow was performed to compare the evolution of discrete particles
following the unmodified and modified equilibrium Eulerian velocities to particles following the
exact Lagrangian velocity. There is very little error in the wall-normal relative velocity for sþ K 3
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(corresponding to sk K 1) even with the unmodified method. For the statistics of streamwise
relative velocity, the unmodified method begins to perform poorly for sþ P 1: it fails to account
for the particles� memory of their higher streamwise velocity as they migrate toward the wall. The
modified method accounts for this effect, as expected based on the result for the shear flow and
vortex examples. The degree of preferential concentration is assessed by computing jSj2 � jXj2.
Both the unmodified and modified methods yield fairly accurate PDF statistics of jSj2 � jXj2.

All the results presented have been for the limit of dense particles (q � 1). The modified
equilibrium Eulerian method applies equally well for light particles or (sufficiently rigid) bubbles.
In this case, added mass, pressure gradient, and Fax�een terms must be retained in the Maxey–Riley
equation (Maxey and Riley, 1983):

q
dv

dt
¼ u� v

s0
þDu

Dt
þ CM

Du

Dt

�
� dv

dt

�
þ ðq � 1Þgþ 3m

4
Du; ð24Þ

where s0 ¼ s=q ¼ d2=ð18mÞ, and CM is the added mass coefficient (CM ¼ 1=2 for spherical parti-
cles). Applying the closure dv=dt � du=dt, as was done to obtain (4), yields

vm ¼ uþ s0
3m
4

Du� ðq � 1Þs0ðIþ ðq þ CMÞs0GÞ�1 Du

Dt

�
� g

�
: ð25Þ

The unmodified method has been validated for bubbles (Ferry and Balachandar, 2001), and it was
found that the method performs equally well for different values of q when comparing particle
types with equal values of jðq � 1Þs0j under the same conditions. The same may be said of the
modified method. The modified method can also be used with a value of s that accounts em-
pirically for nonlinear drag, just as the unmodified method can (Ferry and Balachandar, 2002).

Appendix A. Avoiding singularities

The modified equilibrium Eulerian method can produce anomalously large values of velocity
when the matrix Iþ sG approaches singularity. This occurs when an eigenvalue of G approaches
the value �1=s, corresponding to a region of intense compressive strain. In practice this is usually
not a problem because of the requirement that s be small enough for the equilibrium approach to
be applicable. Therefore, over most of the flow�s domain, we anticipate the locally implicit cor-
rection to be applied without any difficulty. However, there may exist small regions of intense
compressive strain where there are difficulties. A simple way to deal with the possible singularity
of Iþ sG is to determine whether the matrix is nearly singular, and to replace the resulting, ex-
tremely large value of vm with some reasonable value. (Note that for such strong compressional
strain there is no unique equilibrium particle velocity in any case.) However, this simple procedure
produces a field vm which is not smooth.

Instead, we modify (5) to contain an adjustable parameter a:

vm ¼ u� sðIþ asGÞ�1 Du

Dt

�
� g

�
: ðA:1Þ

When a ¼ 1, the modified method is obtained; when a ¼ 0, the unmodified method. For inter-
mediate values of a, Eq. (A.1) can be viewed as an interpolation between the modified and un-
modified methods.
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The value of a is chosen to ensure the invertibility of Iþ asG. The procedure we use has two
virtues: (a) it avoids any explicit calculation of eigenvalues, and (b) it produces a value of vm that
varies smoothly with G. The latter property is important because when vm is used to evolve a
particle concentration field it is necessary to take its spatial derivatives.

To compute a, let G2 and G3 be the second and third invariants of G:

G2 ¼
g22 g23
g32 g33

����
����þ g33 g31

g13 g11

����
����þ g11 g12

g21 g22

����
����; G3 ¼ detðGÞ: ðA:2Þ

Now define v as

v ¼ s 8maxð0;
�

� G2Þ3 þ 8maxð0;� G3Þ2
�1=6

; ðA:3Þ

and let

a ¼
1; if v6 1;
0; if v P 2;
ð1� cosðpvÞÞ=2; otherwise:

8<
: ðA:4Þ

This procedure guarantees that detðIþ asGÞ > 0:207.
Fig. 13, re-plots Fig. 2 with the procedure to avoid singularity. The extensional strain case is

affected as well because it is assumed to be part of a divergence-free flow. (To avoid this, one could
employ a correction that acts only on the eigenspace for the compressive eigenvalue). The vortical
and shear cases are unaffected. Fig. 14 shows the fraction of particles for which a ¼ 1 at all
distances yþ from the wall for sþ ¼ 3 particles. It is clear that the singularity correction is needed
for less than 1% of particles even at yþ ¼ 30. In the isotropic turbulence case, a ¼ 1 for all
sk ¼ 1:28 particles.

Fig. 13. Velocity factors for (a) extensional and (b) compressive strain.
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Appendix B. Interpolation scheme

We introduce a new method which has the same accuracy as shape function method (SFM) at
high wave numbers (Balachandar and Maxey, 1989), but has fourth-order accuracy overall. The
method is as fast as SFM, and makes better (optimal) use of the same derivative information.
SFM assumes the mixed derivatives to be zero, whereas the new method estimates these deriv-
atives as effectively as possible given the information it has.

Let Dx ¼ x1 � x0, x ¼ ðx� xiÞ=Dx, with similar definitions for the y and z directions. Then define
the following basis functions:

L0ðxÞ ¼ ð1� xÞ; L1ðxÞ ¼ x;

M0ðxÞ ¼ ð1� 2xÞx; M1ðxÞ ¼ ð2x� 1Þð1� xÞ;
N0ðxÞ ¼ xð1� xÞ; N1ðxÞ ¼ �xð1� xÞ:

ðB:1Þ

Given x0 6 x6 x1, y0 6 y6 y1, and z0 6 z6 z1, an interpolated quantity ~uuðx; y; zÞ is calculated thusly:

~uuðx; y; zÞ ¼
X1

i¼0

X1

j¼0

X1

k¼0

LiðxÞLjðyÞLkðzÞ 1
��

þMiðxÞ þMjðyÞ þMkðzÞ


uðxi; yj; zkÞ

þ NiðxÞuxðxi; yj; zkÞDxþ NjðyÞuyðxi; yj; zkÞDy þ NkðzÞuzðxi; yj; zkÞDz


: ðB:2Þ

Because of its optimal usage of first-derivative information, this interpolation scheme is termed
the first derivative method.
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